home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
MacWorld 1997 September
/
Macworld (1997-09).dmg
/
Serious Software
/
Cherwell Scientific Demos
/
pro Fit
/
pro Fit 5.0 demo (68k).sea
/
pro Fit 5.0.1 demo (68k).rsrc
/
STR#_807.txt
< prev
next >
Wrap
Text File
|
1996-09-30
|
2KB
|
149 lines
m' (position of the peak)
SD' (standard deviation)
A' (normalized peak height)
m (position of the peak)
SD (standard deviation)
A (normalized peak height)
const (y-offset)
You are not allowed to use such a value for this parameter.
Hide Balloons
Show Balloons
A parameter value cannot be above its upper limit.
A parameter value cannot be below its lower limit.
Spline Data
Y column
X column
Data Window
$BSelect data$(cubic spline)
A smooth function going through the current data points.
Spline
Bad x-value for the spline function.
Not enough data for spline interpolation.
n (exponent)
x0 (x-offset)
m (multiplicative factor)
const (y-offset)
n: integer or real value
y = const + m*(x-x0)^n
Power
+ A' (2 Pi)^(-1/2) exp(-(x-m')^^22/(2 SD'))
y = const + A (2 Pi)^(-1/2) exp(-(x-m)^^22/(2 SD))
Gauss
m' (position of the peak)
K' (sharpness of the peak)
A' (height of the peak)
m (position of the peak)
K (sharpness of the peak)
A (height of the peak)
const (y-offset)
+ A'/(1+K'*(x-m')^^22
y = const + A/(1+K*(x-m)^^22)
Lorentz
base (base^y=x defines y=log(x))
const (y-offset)
x0 (x-offset)
K
A (multiplicative factor)
base: base of logarithm
y=A * log(K*(x-x0)) + const
Log
const (y-offset)
t0 (time-constant)
x0 (x-offset)
A (multiplicative factor)
exponential function
y = A * exp(-(x-x0)/t0) + const
Exp
const (y-offset)
x0 (x-offset)
K (frequency)
A (amplitude)
harmonic oscillation
y = A * sin(K*(x-x0)) + const
Sin
Polynom
deg: degree of the polynomial
f(x) = const + a1*x +...+ a^0*x^^3
f(x) = const + a1*x + a2*x^^22
f(x) = const + a1*x
f(x) = const
const (y-offset)
deg (degree of the polynomial)